Search results

Search for "acidic aqueous environments" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • dissolution and stabilization have been previously studied in vitro using acidic aqueous environments. Nanoceria agglomerated in the presence of some carboxylic acids over 30 weeks, and degraded in others, at pH 4.5 (i.e., the pH value in phagolysosomes). Plants release carboxylic acids, and cerium
  • a second carboxylic acid group may optimally complex with nanoceria. The results provide mechanistic insight into the role of carboxylic acids in nanoceria dissolution and its fate in soils, plants, and biological systems. Keywords: acidic aqueous environments; carboxylic acids; electron microscopy
  • was to test whether carboxylic acids stabilize or accelerate nanoceria dissolution in acidic aqueous environments and determine the mechanism of dissolution depending on the molecular structure of each ligand relating to agglomeration or stabilization. In addition, the influence of ambient laboratory
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023
Other Beilstein-Institut Open Science Activities